Жидкостный ракетный двигатель. Жидкостный ракетный двигатель на криогенном топливе Краткая история развития

Мы все знаем, что одной из основ материальной жизни современного человечества являются всем известные полезные ископаемые нефть и газ. Благословенные углеводороды так или иначе присутствуют в любой области нашей с вами жизни и первое, что приходит на ум любому человеку – горючее. Это бензин, керосин и природный газ, используемый в различных энергосистемах (в том числе и в двигателях транспортных средств).

Сколько автомобилей на дорогах мира и самолетов в воздухе сжигают в своих двигателях … Количество их огромно и столь же огромен объем топлива, вылетающего, так сказать, в трубу (и при этом еще норовящего внести свою немалую долю в отравление атмосферы:-)). Однако процесс этот не бесконечен. Запасы нефти, из которой производится львиная доля используемого в мире горючего (несмотря на то, что она постепенно сдает свои позиции природному газу), быстро уменьшаются. Она постоянно дорожает и дефицит ее ощущается все больше.

Такое положение уже довольно давно заставляет исследователей и ученых всего мира искать альтернативные источники топлива, в том числе и для авиации. Одним из направлений такой деятельности стали разработки летательных аппаратов, использующих криогенное топливо .

Криогенный означает «рожденный холодом », и топливом в этом случае служит сжиженный газ, который хранится при очень низких температурах. Первым, привлекшим в этом плане внимание разработчиков газом, стал водород . Этот газ по своей теплотворной способности втрое превосходит керосин и, кроме того при его использовании в двигателе в атмосферу выделяется вода и совсем небольшое количество окислов азота. То есть для атмосферы он безвреден.

Самолет ТУ-154Б-2.

В середине 80-х годов прошлого века в конструкторском бюро А.Н.Туполева начали создавать самолет, использующий в качестве топлива жидкий водород . Он был разработан на базе серийного ТУ-154Б с использованием турбореактивного двухконтурного двигателя НК-88 . Этот двигатель был создан в двигателестроительном конструкторском бюро им. Кузнецова (Самара) опять же на базе серийного двигателя для Ту-154 НК-8-2 и предназначался для работы на водороде или природном газе . Надо сказать, что в этом бюро работы по новой тематике велись еще с 1968 года.

Тот самый самолет Ту-155 на хранении... К сожалению отвратительном хранении:-(.

Новый самолет, работающий на криогенном топливе получил наименование ТУ-155 . Однако все не так просто. Дело в том, что водород – это опасное топливо . Он чрезвычайно горюч и взрывоопасен. Обладает исключительной проникающей способностью, а храниться и транспортироваться может только в сжиженном состоянии при очень низких температурах, близких к абсолютному нулю (-273 градуса по Цельсию). Эти особенности водорода представляют собой достаточно большую проблему.

Поэтому ТУ-155 представлял собой летающую лабораторию для исследования и решения существующих проблем и базовый самолет при ее создании подвергся коренной переделке. Вместо правого двигателя НК-8-2 был установлен новый криогенный НК-88 (два других остались родными:-)). В задней части фюзеляжа на месте пассажирского салона разместили специальный бак для криогенного топлива , жидкого водорода, объемом 20 куб.м. с усиленной экранно-вакуумной изоляцией, где водород мог храниться при температуре ниже минус 253 градуса Цельсия. К двигателям он подавался специальным турбонасосным агрегатом , как на ракете.

Двигатель НК-88. Сверху на двигателе виден массивный турбонасосный агрегат.

Из-за большой взрывоопасности пришлось из отсека с топливным баком удалить практически все электрооборудование, дабы исключить малейшую возможность искрообразования, и весь отсек постоянно продувался азотом или воздухом . Для управления агрегатами силовой установки была создана специальная гелиевая система управления. Кроме того пары водорода из бака нужно было отводить подальше от двигателей, чтобы избежать воспламенения. Для этого сделали дренажную систему. На самолете хорошо видны ее отводы в хвостовой части фюзеляжа (особенно на киле).

Компоновочная схема ТУ-155. Голубой - топливный бак. В переднем отсеке - обеспечивающее оборудование. Красным - криогенный двигатель.

В целом было создано и внедрено более 30-ти новых самолетных систем. Вобщем работа была проведена грандиозная:-). А ведь еще нужно было наземное, не менее сложное, обеспечивающее заправку и хранение оборудование. Правда тогда полным ходом шла разработка системы «Буран» , на ракете–носителе которой одним из компонентов топлива был жидкий водород. Поэтому считалось, что все будет поставлено на промышленную основу и недостатка в топливе не будет. Но, я думаю, каждому понятно, что криогенное топливо в такой системе становится просто «золотым» по стоимости. И это означает, что коммерческое использование жидкого водорода в ближайшем будущем вряд ли возможно. Поэтому уже тогда шла подготовка к переходу на другой вид криогенного топлива сжиженный природный газ (СПГ ).

Тем не менее первый полет ТУ-155 на жидком водороде состоялся 15 апреля 1988 года. Еще кроме этого было 4 таких полета. После этого ТУ-155 подвергся доработке для полетов с использованием сжиженного природного газа (СПГ).

Этот вид топлива по сравнению с водородом значительно дешевле и доступнее, кроме того он еще и в несколько раз дешевле керосина. Теплотворная способность его на 15% выше, чем у керосина. Кроме того он также мало засоряет атмосферу, а хранить его можно при температуре минус 160 градусов, что на целых 100 градусов выше, чем у водорода. Кроме того на фоне водорода СПГ все же менее пожароопасен (хотя, конечно, опасность такая все же существует) и имеется достаточный опыт поддержания его в безопасном состоянии. Организация газоснабжения (СПГ) аэродромов вобщем-то тоже не представляет чрезвычайной сложности. Почти к каждому крупному аэропорту подведены газовые трубопроводы. Вобщем достоинств хватает:-).

Первые полеты ТУ-155 уже использующего криогенное топливо сжиженный природный газ состоялись в январе 1989 года. (Ролик, помещенный ниже, рассказывает об этом). Еще было около 90 таких полетов. Все они показали, что расход топлива по сравнению с керосином уменьшается почти на 15%, то есть самолет становится экономичнее и выгоднее.

Теперь немного о перспективах … В конце 90-х главный распорядитель российских газовых запасов Газпром выступил с инициативой постройки в начале грузо-пассажирского, а потом и просто пассажирского самолета, который мог бы полностью работать на СПГ. Самолет получил наименование ТУ-156 и создавался на базе уже имеющегося ТУ-155. На него должны были устанавливаться три новых двигателя НК-89 . Это , аналогичные НК-88, но имеющие две независимые топливные системы: одну для и другую для криогенного топлива (СПГ). Это было удобно в том плане, что далеко не везде имелась возможность заправки газом, и самолет мог бы по мере необходимости переходить с одной системы питания на другую. На это по разработанной технологии требовалось всего пять минут. НК-89 имел также теплообменник в затурбинном пространстве, где сжиженный газ переходил в газообразное состояние и затем поступал в камеру сгорания.

Были проведены большие исследовательские и расчетные работы по перекомпоновке отсеков и расположения топливных баков. К 2000-му году на Самарском авиационном заводе должны были быть выпущены три ТУ-156 и начата их сертификация и опытная эксплуатация. Но… К сожалению этого сделано не было. И препятствия к осуществлению задуманных планов были исключительно финансовыми.

После были разработаны еще несколько проектов самолетов, использующих криогенное топливо (СПГ), такие, как, например,ТУ-136 с турбовинтовыми двигателями, работающими как на керосине, так и на сжиженном газе и широкофюзеляжный ТУ-206 с турбореактивными двигателями , работающими на СПГ. Однако на данный момент все эти проекты так пока проектами и остались.

Модель самолета Ту-136.

Модель самолета ТУ-206 (ТУ-204К).

Как сложатся дела в этой области авиационной науки и техники покажет время. Пока создание летательных аппаратов, использующих криогенное топливо тормозится различными обстоятельствами, как объективными, так и субъективными. Предстоит еще много сделать в области разработки специальных самолетных систем, развития наземной инфраструктуры, систем транспортировки и хранения топлива. Но тема эта чрезвычайно перспективна (и, на мой взгляд, очень интересна:-)). Водород, с его огромной энергоемкостью и практически неисчерпаемыми запасами, – это топливо будущего. Об этом можно говорить с полной уверенностью. Переходным этапом к этому служит использование природного газа.

И этот решительный шаг в будущее сделан именно в России. Испытываю гордость еще раз говоря об этом:-). Нигде в мире не было и по сей день нет летательных аппаратов, подобных нашему ТУ-155. Хочется привести слова известного американского авиационного инженера Карла Бревера: «Русские совершили в авиации дело, соразмерное полету первого спутника Земли! »

Это истинная правда! Очень только хочется, чтобы дела эти шли потоком (а русские это могут:-)), и чтобы поток этот был непрерывен, а не двигался рывками, как это у нас часто бывает…

Как уже было сказано, для работы теплового двигателя требуются шк теплоты и холодильник, который по определению должен иметь более ю температуру. Почти всегда температура холодильника равна температуре ^ющего воздуха, тогда как температура источника тепла камеры сгорания, ого реактора или солнечного коллектора может варьироваться. Однако в е источника тепла можно использовать тело с температурой окружающей iJ При этом холодильник должен будет иметь более низкую температуру, ю можно получить с помощью криогенных жидкостей, кие двигатели получили название криогенных. Известны разработки _ри ментальных двигателей, работающих по открытому циклу Ренкина ользованием жидкого азота. На рис. 3.16 представлена схема такой ус - *и.

лкий азот находится в специальном криогенном резервуаре под давлени - Из этого резервуара жидкость направляется в теплообменник, через ко - к рабочему телу подводится некоторое количество теплоты, достаточное; о испарения. При этом мы получим уже газообразный азот с давлением pt __ иературой Tv

исходном положении выпускной клапан рабочего цилиндра закрыт, а впуск - I ікрьіт. В цилиндр поступает |і кмолей испарившегося азота. Действующее. ень давление газа заставляет его опускаться. Данный процесс происхо - ‘олводом тепла при постоянных давлении (р2 = р,) и температуре (Т2= Ту) пор, пока газ не заполнит объем цилиндра v2.

Мы имеем:

В следующем рабочем положении впускной клапан закрывается. Высомг давление газа внутри цилиндра приведет к продолжению движения поршня увеличению объема до тех пор, пока давление газа не станет равным р3 а занк маемый им объем - v3. Этот процесс может происходить как изотермическ" (Т3 = Ту) с продолжением подвода тепла, так и адиабатически (Т3 < Тх) в завн! симости от типа используемого устройства. Рассмотрим более предпочтительны изотермический процесс:

Рассмотрим теперь случай адиабатического расширения, который в реальных ■товиях осуществить гораздо легче. Если во время расширения теплообмен от - ствует, то температура газа будет изменяться по следующему закону:

Здесь для азота у = 1,4. Производимая при расширении работа

с, = R/(y - 1) = 20,8 кДжДкмоль К).

И/атм=Ра™""3 = ^ЛТ3"

В этом случае полезная работа будет равна

И s = pRT1-pRT3 + W23 = iiRT{Tl-T3) + iicv(T1-T3) = ii{Tl-T3)R-?-i. (38)

Таким образом, в рассмотренном выше примере конечная работа, полученн при расширении, окажется равной 4,2 МДж/кмоль, или 150 кДж/кг. Сравнич эту цифру с 5,7 МДж/кмоль, или 204 кДж/кг, для случая изотермического рас­ширения и с удельной теплотой сгорания бензина 47 ООО кДж/кг.

Ясно, что удельная энергия криогенного рабочего тела может быть увеличена -> счет повышения рабочего давления. Однако этот прирост подчиняется логарифмиче-| скому закону. Так, при увеличении давления в 10 раз (до 10 МПа) удельная энег ■ гия возрастет до 11,4 МДж/кмоль, или всего в 2 раза. Заметим, что давлені 10 МПа соответствует 100 атм. Создание двигателя на такое рабочее давление - сложная техническая задача: двигатель окажется тяжелым и очень дорогим.

Бензиновые двигатели внутреннего сгорания имеют средний КПД на урог не 20 %. То есть полезная работа в расчете на 1 кг рабочего тела в бензиново двигателе равна 8000 кДж/кг и более, или почти в 40 раз больше, чем в криоген­ном двигателе.

В созданных первых экспериментальных образцах криогенных двигателей до­стигнутые значения удельной работы составляли менее 50 кДж/кг. В демонстра­ционном автомобиле с таким двигателем на 0,3 мили пути затрачивался 1 галло азота. То есть пока не удалось создать достаточно практичный криогенный дви гатель. Возможно, что после соответствующих доработок эффективность так:*" двигателей можно значительно улучшить1).

Криогенные двигатели для транспортных средств не обеспечивав пока большого пробега. В настоящее время стоимость жидкого азота равна оке 0,5 долл./кг, или 1,52 долл./галлон. С учетом достигнутых значений удельног пробега это значит, что при одинаковом пробеге стоимость используемого д - этого топлива будет в десятки раз больше, чем у бензиновых двигателей.

При этом больший удельный расход «топлива» требует большего его запа на транспортном средстве. А это, в свою очередь, приводит к уменьшению п лезного груза, который может перевозить автомобиль.

Прим. ред. Первым и одним из немногих разработчиков криогенного двигателя являє. Вашингтонский университет (США), который создал свой прототип LN2000 на базе почтово автомобиля Grumman-Olson. На автомобиль был установлен опытный 5-цилиндровый двигате мощностью 15 л. с., работающий на жидком азоте по открытому циклу Ренкина. Криогенны» двигатель обеспечивал максимальную скорость автомобиля 35,4 км/ч, а сосуд Дюара объек 80 л, который использовался для хранения жидкого азота под давлением 24 бара, обеспечив запас хода около 2 миль (3,2 км). Криогенный автомобиль был создан в середине 90-х годов і ходе поиска энергоустановок для автомобиля экологической категории ZEV (с нулевыми вь_ бросами), альтернативных электроприводу. В России также имеются энтузиасты, пытающие создать эффективный криогенный двигатель. Однако значительных успехов, говорящих о пе спективности и актуальности этого направления для автомобильного транспорта, ни в Росси, ни за рубежом, пока не достигнуто.

Единственным несомненным преимуществом криогенных двигателей являет - н экологическая чистота. Однако экологическая безвредность таких систем іеко не нулевая, поскольку для получения жидкого азота необходимы затраты ргии, сопровождающиеся вредными выбросами. Вопрос состоит в том, ком - нсируют ли экологические преимущества серьезные недостатки криогенных гателей, описанные выше.

Докажите, что теоретическая эффективность двигателя Стирлинга без реге­нерации

где ПCamot - эффективность цикла Карно, соответствующего данному тем­пературному диапазону; v - число степеней свободы рабочего тела (газа); г - степень сжатия.

Какой газ лучше использовать в качестве рабочего тела? Объясните почему?

В примерах мы принимали степень сжатия равной 10. Какой была бы эф­фективность двигателя при степени сжатия 20? Какие недостатки будут иметь гсто при более высокой степени сжатия? Есть ли смысл увеличивать степень сжатия?

Нарисуйте процессы, характерные для двигателя Стирлинга, в диаграммах и Т, S для примера, приведенного в тексте. Какой физический смысл имеют дли под кривыми р, V - и 7~, .У - за в и с и м остей?

Рассмотрим два цилиндра А и В, внутри которых находятся поршни. Ра - е объемы внутри цилиндров могут меняться независимо. Максимальный ч каждого из этих цилиндров 10 м3, минимальный объем нулевой. Цилинд - гмдравлически соединены между собой так, что газ в любой точке объемов цилиндров будет иметь одинаковое давление. В начальный момент вре- объем цилиндра А равен 10 м3, а цилиндра В - нулю. Другими словами, ень А будет подниматься, а поршень В опускаться. Показатель адиабаты его тела у = 1,4.

жолько газа (кмоль) находится в системе при давлении 0,1 МПа и темпера - “гре 400 К.

3. Теперь представим, что поршень А поднялся так, что объем в цилиндре умек шился до 1 м3, а объем в цилиндре В остался неизменным. Чему равны т> пература газа и его давление при условии адиабатического процесса? Как энергия затрачена при сжатии?

4. Затем поршни стали двигаться одновременно до тех пор, пока объем в ц линдре А не стал равным нулю, а в цилиндре В - 1 м3. Чему равны давлен, и температура газа в цилиндре В!

5. Следующим этапом является передача теплоты в цилиндр В так, что* объем увеличился до 10 м3. Температура газа во время процесса не и> меняется. Сколько теплоты было предано газу во время этого процесс Какую работу совершил поршень В? Каково давление газа в конечном сс стоянии?

6. Теперь поршень В начинает подниматься, тогда как поршень А опускаете Происходит перетекание газа из одного цилиндра в другой. Этот проце». теоретически происходит без затрат энергии. Из цилиндра А теплота сбр сывается в окружающую среду, и газ охлаждается до температуры 400 В конечном положении, когда цилиндр А имеет максимальный объем, ці считается полностью завершенным. Сколько энергии в течение этого прс цесса было сброшено в окружающую среду?

7. Чему равна эффективность данной машины, т. е. чему равно отношение с" марной произведенной работы к поступившей от нагревателя теплоте?

8. Как эта эффективность соотносится с эффективностью цикла Карно?

9. Нарисуйте рассмотренные процессы в р, У - и 7, ^диаграммах.

10. Получите формулу для эффективности в зависимости от степени сжатия Нарисуйте кривую зависимости КПД от г в диапазоне 1 < г < 100.

11. Если полученное значение эффективности окажется явно завышенным (н реалистичным), например, равным 10 000, какой тогда будет действителы эффективность? Может ли она превышать эффективность цикла Карно? Об ясните свои выводы.

3.4. Представим себе некоторую машину, снабженную искровым двигател.: внутреннего сгорания (цикл Отто). Этот двигатель использует бензин (для пр< стоты допустим, что бензин состоит из чистого пентана), и поэтому его степе сжатия ограничена и равна девяти. Номинальный удельный расход топлива а томобиля 40 миль/галлон.

Поскольку в бензиновых двигателях в качестве топлива можно использовать ъ нол, владелец машины решил перевести её на этот вид топлива. При этом степ», сжатия "увеличилась до 12. Примем, что в любом случае реальная эффективное автомобиля приблизительно равна половине теоретической эффективности. Че равен удельный расход топлива автомобилем на этаноле?

Низшая теплота сгорания и плотность рассматриваемых веществ: пентана - 28.16 МДж/л, 0,626 кг/л; этанола - 21,15 МДж/л, 0,789 кг/л.

Решите эту задачу дважды, один раз для у = 1,67, а другой для у = 1,4.

3.5. Рассмотрим цилиндр с бесфрикционным поршнем. В начальной стадии эк­сперимента он содержит 1 л газа (у = 1,4, с. = 20 кДж/(К кмоль)) при темпера - ■ре 400 К и давлений 105 Па.

Сколько газа в кмолях находится в цилиндре?

2 Чему в данном случае равно произведение pV!

ГКсть теперь поршень перемещается с уменьшением объема газа до 0,1 л. Сжа­тие происходит адиабатически.

Чему равно давление газа после сжатия? і Чему стала равна температура газа?

J Какая работа была совершена компрессором?

1 мерь к газу изотермически подведем 500 Дж теплоты.

і Чему после этого стал равен объем газа?

Чему стало равно лавление?

Поскольку при подводе теплоты газ расширяется (поршень перемещается), какую работу он совершает?

Г „чъ теперь газ расширяется адиабатически до тех пор, пока его объем не ста - равным 1 л.

Чему равно давление газа после адиабатического расширения? і Чему равна температура газа?

какая работа совершена при адиабатическом расширении?

Перь пусть теплота от газа отводится изотермически, пока его давление не іет равным 105 Па. При этом система возвращается в состояние 1.

2. Чему равна суммарная работа поршня, переданная внешней нагрузке? каково общее количество теплоты, полученной системой (отведенную теп - .оту здесь не учитываем)?

Чему равна эффективность устройства?

5 Чему равна соответствующая эффективность цикла Карно?

№ Нарисуйте процессы и весь цикл в р. К-диаграмме.

Предположим, что бензин имеет октановое число 86. Октановое число этанола равно 160. Примем у= 1,4.

1. Как изменилась теплотворная способность 1 л смеси по сравнению с тепло­творной способностью чистого бензина?

2. Чему равно октановое число всей смеси?

Примем, что максимально допустимая степень сжатия топлива г = 0,093 Ог, гле Ог - октановое число.

3. Чему равна максимальная степень сжатия бензинового двигателя? Двигателг работающего на смешанном топливе?

4. Чему равна относительная эффективность двигателя?

5. Чему равен удельный расход топлива на единицу пройденного пути в сл> чае, когда используется чистый бензин и когда применяется топливная смесь?

3.7. Поршневой двигатель открытого цикла работает на атмосферном возду>е. который поступает в него в количестве 23 ■ 10 () кмоль при температуре 300 К и давлении 105 Па. Степень сжатия двигателя равна 5,74.

Сжатие и расширение происходят адиабатически. Подвод тепла осуществляется изобарически, а его отвод - изотермически. За цикл к газу подводится 500 Jb теплоты. Воздух имеет с. = 20 790 Дж/(К - кмоль) и у = 1,4.

Чему равна теоретическая эффективность двигателя? Сравните её с эффектив­ностью цикла Карно.

Выполните следующие действия:

рассчитайте начальный объем цилиндра;

определите для процесса адиабатического сжатия конечные значения V, р, Т и требуемой работы:

определите термодинамические параметры системы после подвода тепла; вычислите совершенную в процессе расширения работу.

3.8. Некоторый двигатель Стирлинга реализует при работе только половин; своей теоретической эффективности. Двигатель работает в диапазоне темпе­ратур от 1000 до 400 К. Какой будет эффективность устройства в следующих случаях:

1. Если использовать идеальный регенератор тепла, аргон в качестве рабочего тела, и степень сжатия 10:1.

2. При тех же, что и в п. 1, условиях степень сжатия равна 20:1.

3. При тех же, что и в п. 1, условиях, но без использования регенератора.

4. При тех же, что и в п. 2, условиях, но без использования регенератора.

3 9. При использовании обогащенных смесей уменьшается эффективность дви­гателя Отто, тогда как при работе на обедненной смеси могут возникнуть про - темы ее поджига. Решением этого вопроса может быть применение двигателей со стратифицированным горением.

Рассмотрим двигатель со степенью сжатия 9:1. Богатая смесь имеет у = 1,2, бедная смесь у = 1,6. При всех прочих равных условиях чему равно отношение ■»Ффективности использования обедненной смеси к эффективности использо - В. 4ия обогащенной смеси?

3.8. Рассмотрим двигатель Отто с искровым зажиганием, имеющий следующие характеристики:

максимальный объем цилиндра VQ= 1 л (КН м3); степень сжатия г = 9:1; давление в конце впуска р0= 5 104 Па; температура смеси в конце впуска 70 = 400 К; среднее значение показателя адиабаты смеси 1,4;

удельная теплоемкость смеси (при постоянном объеме) с = 20 кДжДК - кмоль).

кая мощность передается нагрузке, если вал двигателя вращается с частотой > *00 об/мин?

Чтомные массы: Н - 1 дальтон: С - 12 дальтон; N - 14 дальтон: 0-16 даль - тон. Присутствием аргона в смеси можно пренебречь.

3.12. Высшая теплота сгорания и-гептана (при 1 атм и 20 °С) равна 48,11 МДж/кг. Чему равна низшая теплота сгорания?

3.13. 1 моль некоторого газа (у = 1,6, cv = 13,86 Дж/(К кмоль) при 300 К занимает ьем 1 л. Для каждого шага, описанного ниже, определите величины р, Vu Т.

Шаг 1 -> 2.

Адиабатическое сжатие газа до объема 0,1 л. Какое количество энергии tV12 было затрачено при сжатии?

Шаг 2 -> 3.

Изотермическая передача рабочему телу 10 кДж тепла. Чему равна внешняя работа?

Шаг 3 -> 4.

Адиабатическое расширение газа 10:1.

Шаг 4 -> 1.

Изотермический отвод теплоты с возвратом газа в состояние 1. Чему равна отведенная энергия?

Чему равна общая эффективность цикла?

Чему равна эффективность соответствующего цикла Карно?

Какую мощность будет иметь двигатель, если его вал вращается с частотой 5000 об/мин (5000 циклов в минуту)?

3.14. В двигателе Стирлинга, рассмотренном ранее, происходит изотермическое сжатие, за которым следует изохорический подвод тепла, изотермическое сжатие и изохорический отвод тепла.

Изотермическое сжатие достаточно сложно обеспечить, особенно в дви­гателях, имеющих большую частоту врашения. Поэтому предположим, что двигатель при работе осуществляет адиабатическое сжатие. Примел., что другие фазы работы рассматриваемого двигателя соответствуют фа­зам ранее описанного двигателя. Так, при изотермическом подводе тепла к рабочему телу подводится 293 Дж. То есть «горячий» цилиндр после процесса адиабатического сжатия будет иметь температуру 652 К до окончания процесса подвола теплоты.

Определите теоретическую эффективность двигателя (без регенерации тепла) и сравните её с эффективностью соответствующего цикла Карно.

Определите мощность, производимую одним цилиндром данного двигателя, при­нимая условие, что эффективность реального двигателя будет приблизительно в 2 раза меньше, чем эффективность идеального. Частота вращения вала двига­теля 1800 об/мин. Каждый оборот врашения вала соответствует одному полному циклу двигателя. Для расчетов примите у = 1,4.

3.15. Предположим, что двигатель работает в температурном диапазоне меж­ду 1000 и 500 К с эффективностью двигателя Карно. Источник теплоты имеет мощность 100 кВт и температуру 1500 К. Данное тепло передается рабочему телу ранее описанного двигателя. Допустим, что передача теплового потока осуществляется при температурном градиенте, снижающем температуру от 1500 до 1000 К. Эффективность передачи тепла при этом примем равной 100 %, т. е. мощность 100 кВт подводится к двигателю без потерь.

Чему равна эффективность описанного выше двигателя, работающего по циклу Іирно? Чему равна полезная мощность данной системы (двигателя)?

3.16. Паровой котел подает пар в паровую турбину. В стенках котла име­йся каналы, по которым протекает пар. Эти стенки с одной стороны на­ходятся в зоне действия пламени топки. Температура нагретого пара 500 К, -.чпература стенки, контактирующей с пламенем, 1000 К. Через каждый квадратный сантиметр поверхности нагрева проходит тепловой поток 1 кВт. Теплопроводность металлических стенок канала X зависит от температуры следующему закону: X = 355 - 0.111Т (в системе СИ). Температура под- с" чвляется в кельвинах.

Рассчитайте толщину стенки.

2 Определите температуру в средней точке между внутренней и внешней стен­кой канала.

I". Четырехтактный двигатель Отто с искровым зажиганием имеет общий объем линдров 2 л и работает на метане (высшая теплота сгорания 55,6 МДж/кг). тепень сжатия в двигателе 10:1. Для впрыска топлива используется инжек - ная система, которая подает топливо таким образом чтобы выдерживалось аанное стехиометрическое соотношение. Показатель адиабаты смеси равен 1,4. ■стена обладает среднестатистическим уровнем потерь, поэтому действитель - ч мощность, которую вырабатывает двигатель, составляет 30 % идеальной, начале процесса сжатия давление рабочей смеси составляет только 5 104 На < температуре 350 К, так как гидравлические потери на входе можно считать небрежимо малыми.

му равна мощность, передаваемая двигателем на нагрузку, если частота вра - ргния его вала равна 5000 об/мин? С учетом особенностей двигателя расчет Сходимо произвести исходя из низшей теплоты сгорания топлива.

18. Рассмотрим двигатель с искровым зажиганием, степень сжатия которого на 9:1. Газ внутри цилиндра имеет у= 1,5.

начальном состоянии рабочее тело имеет следующие параметры: = I л;

I атм; Тх = 300 К.

конце процесса сжатия впрыскивается 10 мг бензина, затем смесь поджига - г"я. Сгорание топлива происходит мгновенно. Примем, что удельная теплота ания бензина 45 МДж/кг.

Определите идеальную эффективность двигателя.

Подсчитайте эффективность соответствующего заданным условиям цикла Карно.

3. Докажите, что уменьшение количества впрыскиваемого топлива за один пики приведет к приближению эффективности цикла Отто к эффективности ЦИК Карно.

3.19. В дизельном двигателе топливо впрыскивается в горячий сжатый воздух, находящийся в цилиндре, после чего смесь самопроизвольно возгорается. Пред­положим, что топливо подается относительно медленно, так что сгорание смеси имеет место практически при постоянном давлении. Степень сжатия г, использ> ■ емая в большинстве дизельных двигателей, находится в диапазоне между 16:1 и 22:1. В дизельных двигателях самопроизвольный поджиг надежно происходи при температуре воздуха не ниже 800 К.

Воздух имеет отношение удельной теплоемкости при постоянном давлении к удельной теплоемкости при постоянном объеме, равное 1,4 (у = 1,4). Пус температура воздуха на входе в холодный дизельный двигатель 300 К.

Какой должна быть минимальная степень сжатия, требуемая для запуска дви­гателя?

3.20. Рассмотрим машину, которая использует в качестве рабочего тела возд> і (у = 1,4) и выполняет последовательный ряд термодинамических процессов В конце каждого процесса определите характеристики состояния газа (давлениг. объем и температуру), а также энергию, характерную для каждого процесса.

В начальном состоянии (состояние 1) газ имеет следующие характеристики рх = 105 Па; Vx = 10-3 м3; Тх = 300 К.

1. 1-й процесс (шаг I -> 2): адиабатическое сжатие, уменьшение объема до 10-4 м3.

2. 2-й процесс (шаг 2 -> 3): изобарический подвод 200 Дж теплоты.

3. 3-й процесс (шаг 3 -> 4): адиабатическое расширение до V4 = 10_3м3.

Подсчитайте всю тепловую и механическую энергию, которая подводится к дви­гателю, и всю механическую энергию, отводящуюся от него. Исходя из этого определите эффективность машины. (Подсказка: не забудьте учесть все процес­сы, в которых отводится энергия.)

3. 21.В цикле дизельного двигателя можно различить следующие фазы:

фаза 1 2. Адиабатическое сжатие чистого воздуха от объема Vx до объема " :

фаза 2 -> 3. Сжигание топлива при постоянном давлении с расширением от объема V2 до объема К3;

фаза 3^4. Адиабатическое расширение от объема V3 до объема V4; фаза 4 -» 1. Изохорический отвод тепла, при котором газ оказывается в пер­воначальных условиях.

т цикл похож на цикл Отто с той лишь разницей, что в никле Отто сгорание исходит изохорически, тогда как в дизельном двигателе - изобарически, смотрим цикл, в котором Fj = К) 3 м3, V2 = 50 Ш-6 м3, V3 = 100 10-6 м3, = 105 Па, 7] - 300 К и для всех процессов будем считать у = 1,4.

Подсчитайте теоретическую эффективность цикла.

Подсчитайте эффективность с помощью уравнения эффективности цикла Дизеля, полученного в гл. 4.

Подсчитайте эффективность путем оценки всей механической энергии (сжатия и расширения) и всех тепловых процессов (подвода и отвода тепла). Будьте достаточно осторожными при анализе того, что происходит во время фазы сгорания (2->3), когда выделяется энергия сгорания топлива и одновременно производится некоторая механическая работа.

льтаты по пп. 2 и 3 должны быть одинаковыми.

Жидкостный ракетный двигатель – это двигатель, топливом для которого служат сжиженные газы и химические жидкости. В зависимости от количества компонентов ЖРД делятся на одно-, двух- и трехкомпонентные.

Краткая история развития

Впервые использование сжиженного водорода и кислорода как топлива для ракет предложил К.Э. Циолковский в 1903 году. Первый прототип ЖРД создал американец Роберт Говард в 1926 году. Впоследствии подобные разработки проводились в СССР, США, Германии. Самых больших успехов добились немецкие ученые: Тиль, Вальтер, фон Браун. Во время Второй мировой войны они создали целую линейку ЖРД для военных целей. Есть мнение, что создай Рейх «Фау-2» раньше, они бы выиграли войну. Впоследствии холодная война и гонка вооружений стали катализатором для ускорения разработок ЖРД с целью применения их в космической программе. При помощи РД-108 были выведены на орбиту первые искусственные спутники Земли.

Сегодня ЖРД используется в космических программах и тяжелом ракетном вооружении.

Сфера применения

Как уже было сказано выше, ЖРД используется в основном как двигатель космических аппаратов и ракет-носителей. Основными преимуществами ЖРД есть:

  • наивысший удельный импульс в классе;
  • возможность выполнения полной остановки и повторного запуска в паре с управляемостью по тяге дает повышенную маневренность;
  • значительно меньший вес топливного отсека в сравнении со твердотопливными двигателями.

Среди недостатков ЖРД:

  • более сложное устройство и дороговизна;
  • повышенные требования к безопасной транспортировке;
  • в состоянии невесомости необходимо задействовать дополнительные двигатели для осаждения топлива.

Однако основным недостатком ЖРД является предел энергетических возможностей топлива, что ограничивает космическое освоение с их помощью до расстояния Венеры и Марса.

Устройство и принцип действия

Принцип действия ЖРД один, но он достигается при помощи разных схем устройств. Горючее и окислитель при помощи насосов поступают из разных баков на форсуночную головку, нагнетаются в камеру сгорания и смешиваются. После возгорания под давлением внутренняя энергия топлива превращается в кинетическую и через сопло вытекает, создавая реактивную тягу.

Топливная система состоит из топливных баков, трубопроводов и насосов с турбиной для нагнетания топлива из бака в трубопровод и клапана-регулятора.

Насосная подача топлива создает высокое давление в камере и, как следствие, большее расширение рабочего тела, за счет которого достигается максимальное значение удельного импульса.

Форсуночная головка – блок форсунок для осуществления впрыска топливных компонентов в камеру сгорания. Основное требование к форсунке – качественное смешивание и скорость подачи топлива в камеру сгорания.

Система охлаждения

Хотя доля теплоотдачи конструкции в процессе сгорания незначительна, проблема охлаждения актуальна ввиду высокой температуры горения (>3000 К) и грозит термическим разрушением двигателя. Выделяют несколько типов охлаждения стенок камеры:

    Регенеративное охлаждение базируется на создании полости в стенках камеры, через которую проходит горючее без окислителя, охлаждая стенку камеры, а тепло вместе с охладителем (горючим) возвращается обратно в камеру.

    Пристенный слой – это созданный из паров горючего слой газа у стенок камеры. Достигается этот эффект путем установки по периферии головки форсунок подающих только горючее. Таким образом горючая смесь испытывает недостаток окислителя, и горение у стенки происходит не так интенсивно, как в центре камеры. Температура пристенного слоя изолирует высокие температуры в центре камеры от стенок камеры сгорания.

    Абляционный метод охлаждения жидкостного ракетного двигателя осуществляется нанесением на стенки камеры и сопел специального теплозащитного покрытия. Покрытие при высоких температурах переходит из твердого состояния в газообразное, поглощая большую долю тепла. Данный метод охлаждения жидкостного ракетного двигателя использовался в лунной программе «Аполлон».

Запуск ЖРД очень ответственная операция в плане взрывоопасности при сбоях в ее осуществлении. Есть самовоспламеняющиеся компоненты, с которыми не возникает трудностей, однако при использовании для воспламенения внешнего инициатора необходима идеальная согласованность подачи его с компонентами топлива. Скопление несгоревшего топлива в камере имеет разрушительную взрывную силу и сулит тяжелые последствия.

Запуск больших жидкостных ракетных двигателей проходит в несколько ступеней с последующим выходом на максимальную мощность, в то время как малые двигатели запускаются с моментальным выходом на стопроцентную мощность.

Система автоматического управления жидкостных ракетных двигателей характеризируется выполнением безопасного запуска двигателя и выхода на основной режим, контролем стабильной работы, регулировкой тяги согласно плану полета, регулировкой расходников, отключением при выходе на заданную траекторию. Вследствие не поддающихся расчетам моментов ЖРД оснащается гарантийным запасом топлива, чтобы ракета могла выйти на заданную орбиту при отклонениях в программе.

Компоненты топлива и их выбор в процессе проектирования являются решающими в схеме построения жидкостного ракетного двигателя. Исходя из этого, определяются условия хранения, транспортировки и технологии производства. Важнейшим показателем сочетания компонентов является удельный импульс, от которого зависит распределение процента массы топлива и груза. Размеры и масса ракеты рассчитываются при помощи формулы Циолковского. Кроме удельного импульса, плотность влияет на размер баков с компонентами горючего, температура кипения может ограничивать условия эксплуатации ракет, химическая агрессивность свойственна всем окислителям и при несоблюдении правил эксплуатации баков может стать причиной возгорания бака, токсичность некоторых соединений топлива может нанести серьезный вред атмосфере и окружающей среде. Поэтому фтор хотя и является лучшим окислителем, чем кислород, не используется ввиду своей токсичности.

Однокомпонентные жидкостные ракетные двигатели как топливо используют жидкость, которая, взаимодействуя с катализатором, распадается с выходом горячего газа. Основное преимущество однокомпонентных ЖРД в простоте их конструкции, и хотя удельный импульс таких двигателей небольшой, они идеально подходят как двигатели с малой тягой для ориентации и стабилизации космических аппаратов. Данные двигатели используют вытеснительную систему подачи горючего и ввиду небольшой температуры процесса не нуждаются в системе охлаждения. К однокомпонентным двигателям относятся также газореактивные двигатели, которые используются в условиях недопустимости тепловых и химических выхлопов.

В начале 70-х годов США и СССР разрабатывали трехкомпонентные жидкостные ракетные двигатели, которые использовали бы в качестве горючего водород и углеводородное горючее. Таким образом двигатель работал бы на керосине и кислороде при запуске и переключался на жидкий водород и кислород на большой высоте. Примером трехкомпонентного ЖРД в России есть РД-701.

Управление ракетой впервые было применено в ракетах «Фау-2» при использовании графитных газодинамических рулей, однако это снижало тягу двигателя, и в современных ракетах используются поворотные камеры, прикрепленные к корпусу шарнирами, создающими маневренность в одной или двух плоскостях. Кроме поворотных камер, используются также двигатели управления, которые закреплены соплами в противоположном направлении и включаются при необходимости управления аппаратом в пространстве.

ЖРД закрытого цикла – это двигатель, один из компонентов которого газифицируется при сжигании при небольшой температуре с малой частью другого компонента, полученный газ выступает как рабочее тело турбины, а после подается в камеру сгорания, где сгорает с остатками топливных компонентов и создает реактивную тягу. Основным недостатком данной схемы есть сложность конструкции, но при этом удельный импульс увеличивается.

Перспектива увеличения мощности жидкостных ракетных двигателей

В российской школе создателей ЖРД, руководителем которой долгое время был академик Глушко, стремятся к максимальному использованию энергии топлива и, как следствие, предельно возможному удельному импульсу. Так как максимальный удельный импульс можно получить лишь при повышении расширения продуктов сгорания в сопле, все разработки ведутся на поиски идеальной топливной смеси.

Двигатели предназначены для использования на летательных аппаратах с криогенным топливом, для высокоскоростного наземного транспорта, в системах электродвижения морских судов, космической и общепромышленной криогенной технике для привода криогенных насосов, «холодных» осевых компрессоров и т. д.

В качестве активных материалов ротора использованы высокотемпературные сверхпроводящие (ВТСП) керамические элементы на основе иттрия или висмута.

Основные преимущества

ВТСП двигатели различных типов, работающие в среде жидкого азота, имеют удельную выходную мощность в 3-4 раза выше, чем обычные электромоторы.

С 2005 г. в МАИ ведутся разработки высокодинамичных электродвигателей для приводов крионасосов водородной энергетики и систем криообеспечения силовых СП кабелей. Экспериментально показано, что высокодинамичные двигатели с постоянными магнитами и объемными ВТСП элементами имеют выходную мощность в 1,3-1,5 раза выше, чем обычные синхронные двигатели при тех же режимах охлаждения в среде жидкого азота.

В 2007 г. в МАИ совместно с ОАО «НПО Энергомаш имени ак. В. П. Глушко» и ОАО «АКБ Якорь» создан и успешно испытан промышленный образец крионасоса с ВТСП электроприводом для систем криообеспечения силовых СП кабелей.

Завершена разработка и испытания двигателей мощностью до 100 кВт. В стадии разработки находятся двигатели мощностью до 500 кВт.

Новизна предложенных решений защищена семью патентами на изобретения.

Исследования выполняются в рамках совместных немецко-российских проектов, объединяющих МАИ (Москва), ВНИИНМ им. А. А. Бочвара (Москва), ВЭИ (Москва), ИФТТ РАН (пос. Черноголовка, Московская область), IPHT (Jena, Deutschland), Oswald Elektromеotoren GmbH (Miltenberg, Deutschland), IEMA (Stuttgart, Deutschland), IFW (Dresden, Deutschland), а также по проекту «Наука ради мира» между МАИ и Оксфордским университетом (Великобритания).

Основные технические характеристики

  • Электродвигатели гистерезисного типа
  • Электродвигатели реактивного типа

Контакты:
+7 499 158-45-67

Изобретение относится к ракетно-космической технике и может быть использовано в двигательных и энергетических установках перспективных средств межорбитальной транспортировки, предназначенных для доставки космических аппаратов на различные высокоэнергетические орбиты и отлетные от Земли траектории. В двух вариантах безнасосного криогенного жидкостного ракетного двигателя, в составе которых содержатся камера двигателя с камерой сгорания и рубашкой охлаждения, баки с жидкими горючим и окислителем, системы подачи топлива, для подачи каждого компонента топлива из бака в камеру двигателя используют пару параллельно подключенных промежуточных баллонов с запорными устройствами на входе и выходе, внутри промежуточных баллонов имеется мерная емкость с расширительным соплом и теплообменником, а полости промежуточных баллонов через запорные устройства соединены с устройством эффективного сброса газообразных остатков. В первом варианте двигателя выходы промежуточных баллонов горючего соединены через регулятор давления с входом в рубашку охлаждения камеры двигателя, а выходы промежуточных баллонов окислителя соединены через регулятор давления с входом в камеру сгорания двигателя, кроме этого входы теплообменников промежуточных баллонов через запорные устройства подсоединены к выходу рубашки охлаждения камеры двигателя, а выходы теплообменников соединены с входом горючего в камеру сгорания двигателя. Во втором варианте рубашка охлаждения камеры двигателя разделена на секцию охлаждения горючим и секцию охлаждения окислителем, при этом выходы промежуточных баллонов горючего и окислителя соединены через регуляторы давления с входами секций рубашки охлаждения камеры двигателя горючим и окислителем соответственно, кроме этого входы теплообменников промежуточных баллонов горючего и окислителя через запорные устройства присоединены к выходам соответствующих секций охлаждения камеры двигателя, а выходы теплообменников промежуточных баллонов горючего и окислителя соединены с соответствующими входами этих компонентов в камеру сгорания двигателя. Изобретение обеспечивает создание надежного и экологически чистого криогенного ЖРД с вытеснительной системой подачи топлива, обладающего повышенной эффективностью и расширенной областью применения и имеющего пониженные габариты и массу при более высокой надежности запуска в условиях невесомости, повышенные равномерность и экономичность расхода топлива, упрощенные режимы работы, пониженную стоимость разработки и изготовления двигателя. 2 н.п. ф-лы, 3 ил.

Рисунки к патенту РФ 2492342

Изобретение относится к ракетно-космической технике (РКТ) и может быть применено в двигательных (ДУ) и энергетических (ЭУ) установках перспективных средств межорбитальной транспортировки (СМТ) - верхних ступеней ракет-носителей (ВС), апогейных ступеней (АС), разгонных блоков (РБ) и межорбитальных буксиров (МБ), предназначенных для доставки космических аппаратов (КА) на различные эллиптические и круговые орбиты, а также на отлетные траектории (к Луне, Марсу и т.д.).

В настоящее время доминирующее положение в ДУ СМТ занимают жидкостные ракетные двигатели (ЖРД) с турбонасосной системой подачи топлива, основными недостатками которой являются высоконапряженные параметры работы, относительная сложность конструкции и пониженная надежность, приводящие к большим затратам времени и средств при отработке ЖРД для достижения требуемой надежности. В связи с этим, а также благодаря прогрессу в создании легких и высокопрочных композиционных материалов, актуальным становится возвращение к разработке и использованию маршевых ЖРД с вытеснительной системой подачи топлива (ВСПТ), имеющей такие преимущества, как простота, надежность, низкая стоимость разработки и изготовления, быстрое приведение системы в рабочее состояние. Традиционным типом ВСПТ является система с вытеснением жидких компонентов топлива из баков на вход в ЖРД газообразным рабочим телом наддува (например, гелием).

Однако для двигателей СМТ на криогенных, экологически чистых топливах, имеющих, как правило, пониженную плотность (например, топливо Н 2 +O 2), использование традиционной ВСПТ, вместо турбонасосной системы, приводит к значительному снижению массы доставляемого КА и повышению удельной стоимости его доставки вследствие:

Использования крупногабаритных топливных баков с высоким внутрибаковым давлением (p б >4 МПа);

Большой потребной массы газов наддува баков, являющейся пассивной массой;

Пониженных характеристик ЖРД из-за низкого оптимального давления в камере сгорания p к opt (в частности, для двигателей РБ на топливе Н 2 +O 2 p к орt 2 МПа).

Из двигателей с ВСПТ нетрадиционного типа известны два варианта ЖРД многократного включения , имеющие повышенную (в сравнении с турбонасосными ЖРД) эффективность применения и взятые в качестве прототипа. Преимущества прототипа перед ЖРД с ВСПТ традиционного типа определяются тем, что его крупногабаритные топливные баки имеют низкое внутрибаковое давление (p б <0,2 МПа), а непосредственное питание двигателя осуществляется самовытеснением газифицируемых компонентов топлива из малоразмерных промежуточных баллонов окислителя (ПБО) и горючего (ПБГ). Газификация горючего и окислителя в ПБО и ПБГ осуществляется за счет тепла, снимаемого с рубашки охлаждения камеры двигателя. В сравнении с ВСПТ традиционного типа такая система подачи позволяет:

Многократно (в 3 6 раз) снизить массу топливных баков и, примерно на порядок, массу системы их наддува (включая массу газов наддува и массу баллонов их хранения);

Значительно поднять давление в камере сгорания (КС) двигателя, увеличить степень расширения его сопла и удельный импульс тяги при прочих равных условиях;

Обеспечить более высокую полноту сгорания топлива, упрощенное регулирование режимов работы двигателя и снижение массы невырабатываемых топливных остатков благодаря полной газификации компонентов топлива перед их подачей на вход двигателя.

При этом прототип имеет и ряд недостатков. Относительно небольшие объемы и массы высоконапорных средств подачи топлива (ПБО и ПБГ) достигаются за счет малой тяги (Р 1 кН) и коротких включений двигателя ( вкл 15 мин). Это, в свою очередь, предполагает использование многовитковых, длительных схем межорбитальных перелетов с большой кратностью включений маршевого двигателя (до n=100 и более).

Ресиверы окислителя и горючего в прототипе имеют относительно небольшие объемы и массу только в случае их использования на участке запуска и выхода ЖРД на установившийся режим (т.е. на участке прогрева его рубашки охлаждения длительностью вых 10 с). При необходимости обеспечения длительной и непрерывной работы ЖРД (за счет поочередных включений и «перезарядок» ресивера и промежуточного баллона в линиях подачи каждого из компонентов) длительность включений ресиверов, их требуемые объемы и масса должны быть увеличены на порядок, а при одновременном увеличении и тяги двигателя - на два порядка. При этом для длительной работы ЖРД потребуется четкая синхронизация процессов опорожнения ПБО и ПБГ и их «зарядки» с соответствующим усложнением системы подачи. Дополнительной проблемой является и существенная переменность давления и температуры компонентов топлива, поступающих на вход ЖРД из нерегулируемых ресиверов в процессе их опорожнения.

Таким образом, областью эффективного применения прототипа являются межорбитальные перелеты, выполняемые с помощью СМТ (АС, РБ и МБ) по многовитковым схемам, где допустимо использование маршевых ЖРД с ограниченной тягой (Р 1 кН) и ограниченными импульсами тяги во включениях (I 10 6 Н·с).

Цель настоящего изобретения состоит в создании надежного и экологически чистого криогенного ЖРД с вытеснительной системой подачи топлива, обладающего повышенной эффективностью и расширенной областью применения и имеющего:

Пониженные габариты и массу двигателя в целом;

Повышенную равномерность подачи топлива и упрощенные режимы работы;

Повышенную надежность запуска двигателя в условиях невесомости;

Повышенную экономичность двигателя в расходе топлива;

Пониженную стоимость разработки и изготовления двигателя.

Поставленная цель достигается в двух вариантах двигателя.

В первом варианте, в безнасосном криогенном ЖРД, содержащем линию подачи окислителя, включающую последовательно соединенные бак с жидким окислителем, промежуточный баллон окислителя с запорными устройствами на входе и выходе и расположенной в его полости мерной емкостью с расширительным соплом и теплообменником, регулятор давления и камеру сгорания двигателя, и линию подачи горючего, включающую последовательно соединенные бак с жидким горючим, промежуточный баллон горючего с запорными устройствами на входе и выходе и расположенной в его полости мерной емкостью с расширительным соплом и теплообменником, регулятор давления, рубашку охлаждения камеры двигателя, теплообменники промежуточных баллонов окислителя и горючего с запорными устройствами на входе и камеру сгорания, параллельно промежуточным баллонам окислителя и горючего подключены баллоны-дублеры с запорными устройствами на входе и выходе и расположенными в их полостях мерными емкостями с расширительным соплом и теплообменником, кроме этого полости всех промежуточных баллонов через запорные устройства соединены с устройством эффективного сброса остатков газа.

Отличительными признаками от варианта № 1 прототипа является то, что параллельно промежуточным баллонам окислителя и горючего подключают баллоны-дублеры с запорными устройствами на входе и выходе и расположенными в их полостях мерными емкостями с расширительным соплом и теплообменником, кроме этого полости всех промежуточных баллонов через запорные устройства соединены с устройством эффективного сброса остатков газа. Эти отличия позволяют:

Использовать дублирующий промежуточный баллон в линиях подачи каждого из компонентов во время «перезарядки» основного промежуточного баллона новой порцией жидкого компонента (и наоборот) без останова двигателя;

Изъять из состава ЖРД ресиверы окислителя и горючего (поскольку их функции поочередно выполняют основной и дублирующий промежуточные баллоны);

Более эффективно использовать газообразные остатки из промежуточных баллонов перед их «перезарядкой» новой порцией жидкого компонента.

Поочередное использование в линиях подачи каждого из компонентов двух промежуточных баллонов (вместо одного у прототипа ) предоставляет возможности:

1) увеличения, примерно на порядок, тяги двигателя (либо такого же сокращения емкости промежуточных баллонов при неизменной тяге);

2) реализации непрерывного и сколь угодно длительного установившегося режима работы маршевого ЖРД (независимо от емкости промежуточных баллонов).

Эти возможности расширяют область применения предлагаемого двигателя (например, за счет использования в ВС и в многократно более грузоподъемных СМТ, где требуется более высокий уровень тяги), а также повышают эффективность выполнения задач, характерных для прототипа . Например, использование в РБ этого двигателя такой же тяги, что и у прототипа, но имеющего промежуточные баллоны с меньшими габаритами и массой, позволит увеличить массу КА, выводимого на геостационарную орбиту (ГСО), и при этом сократить в ~3 раза длительность его выведения, благодаря возможности длительного включения двигателя ( вкл =2 3 часа) для осуществления разового перехода с геопереходной орбиты (ГПО) на ГСО. (Для сравнения - в варианте прототипа с многократными включениями длительностью вкл =10 15 мин переход «ГПО ГСО» должен выполняться по многовитковой и многосуточной схеме).

При этом введение баллонов-дублеров и удаление из состава ЖРД ресиверов окислителя и горючего позволяет получить ряд сопутствующих эффектов.

1. Снижение габаритов и массы двигателя обеспечивается тем, что объемы промежуточных баллонов, «заряжаемых» жидкими окислителем и горючим, могут быть приняты значительно меньшими (как минимум, на порядок) в сравнении с ресиверами прототипа , заряжаемьми газообразными компонентами от промежуточных баллонов.

2. Повышение равномерности подачи топлива и упрощение режимов работы ЖРД достигаются использованием в его системе подачи топлива однотипных устройств - промежуточных баллонов, снабженных элементами, регулирующими как интенсивность газификации и нагрев компонентов топлива (путем открытия или закрытия запорных устройств на входах встроенных теплообменников), так и давление подаваемых компонентов (с помощью регулятора давления на выходе промежуточных баллонов).

В системе подачи топлива прототипа используются разные типы устройств (промежуточные баллоны и ресиверы) с различными давлением и температурой подаваемых компонентов, причем у нерегулируемых ресиверов параметры компонентов топлива на выходе во время работы будут непрерывно меняться, а работа системы подачи компонентов топлива усложнена необходимостью синхронизации процессов опорожнения ПБО и ПБГ, а также их «перезарядки».

3. Понижение стоимости разработки и изготовления двигателя обеспечивается за счет отмеченных выше факторов (упрощения состава, снижения габаритов и массы, а также упрощения режимов работы двигателя). Как фактор снижения стоимости изготовления двигателя можно отметить также двукратное (в сравнении с прототипом ) повышение серийности производства ПБО и ПБГ.

4. Повышение надежности запуска двигателя в условиях невесомости реализуется за счет многократно увеличенного располагаемого запаса газообразных компонентов топлива в промежуточных баллонах (в сравнении с ресиверами в прототипе ).

5. Повышение экономичности ЖРД в расходе топлива достигается максимально полезным расходом газообразных остатков компонентов из промежуточных баллонов (перед их «перезарядкой»), осуществляемым через устройство эффективного сброса остатков газа. Наиболее эффективным вариантом этого устройства являются осевые ЖРД малой тяги (ЖРДМТ), тяга которых совпадает по направлению с продольной осью ступени. Кроме того, в качестве данного устройства могут рассматриваться:

Двигатели системы ориентации и стабилизации ступени;

Осевые газовые сопла;

Бортовой электрохимический генератор (ЭХГ) системы электроснабжения СМТ и прочие бортовые потребители.

Во втором варианте двигателя его рубашка охлаждения разделена (как и у варианта № 2 прототипа ) на секцию охлаждения горючим и секцию охлаждения окислителем. Здесь безнасосный криогенный ЖРД содержит линию подачи окислителя, включающую последовательно соединенные бак с жидким окислителем, промежуточный баллон окислителя с запорными устройствами на входе и выходе и расположенной в его полости мерной емкостью с расширительным соплом и теплообменником, регулятор давления, секцию рубашки охлаждения камеры двигателя окислителем, теплообменник промежуточного баллона подачи окислителя с запорным устройством на входе, камеру сгорания двигателя, и линию подачи горючего, включающую последовательно соединенные бак с жидким горючим, промежуточный баллон горючего с запорными устройствами на входе и выходе и расположенной в его полости мерной емкостью с расширительным соплом и теплообменником, регулятор давления, секцию рубашку охлаждения камеры двигателя горючим, теплообменник промежуточного баллона горючего с запорным устройством на входе и камеру сгорания двигателя. В этом варианте двигателя отличительным признаком от варианта № 2 прототипа , также как и в описанном выше первом варианте, является то, что параллельно промежуточным баллонам горючего и окислителя подключены баллоны-дублеры с запорными устройствами на входе и выходе и расположенными в их полостях мерными емкостями с расширительным соплом и теплообменником, а полости всех промежуточных баллонов через запорные устройства соединены с устройством эффективного сброса остатков газа.

В отличие от первого варианта, здесь теплообменники ПБО и его баллона-дублера используют в качестве теплоносителя окислитель (а не горючее, как в первом варианте) со своим отдельным источником тепла - секцией рубашки охлаждения камеры двигателя окислителем. Это делает полностью независимыми контуры подачи окислителя и горючего, минимизируя возможность их контакта внутри двигателя, что обеспечит его более высокую надежность и повышенную безопасность эксплуатации.

Предлагаемые технические решения иллюстрируются чертежами, приведенными на Фиг.1÷Фиг.3. На Фиг.1 изображена схема первого варианта безнасосного криогенного жидкостного ракетного двигателя (ЖРД № 1), а на Фиг.2 - схема его второго варианта (ЖРД № 2). На фиг.3 изображена схема промежуточного баллона, принятая единой как для окислителя и горючего, так и для вариантов ЖРД № 1 и ЖРД № 2.

В обоих вариантах (Фиг.1 и 2) безнасосный криогенный ЖРД содержит систему подачи окислителя с баком жидкого окислителя 1, промежуточными баллонами окислителя 2 и 3, регулятором давления 4, запорными устройствами (ЗУ) и трубопроводами, систему подачи горючего с баком жидкого горючего 5, промежуточными баллонами горючего 6 и 7, регулятором давления 8, запорными устройствами и трубопроводами, устройство эффективного сброса остатков газа 9 и камеру двигателя 10 с камерой сгорания 11. В первом варианте (Фиг.1) ЖРД имеет единую рубашку охлаждения 12, а во втором варианте (Фиг.2) - рубашку с раздельными секциями охлаждения окислителем 13 и горючим 14.

На схеме промежуточного баллона (Фиг.3) показаны бак с жидким окислителем 1 (или с жидким горючим 5), снабженный заборным устройством 15, промежуточный баллон 2 (или 3, 6, 7) с запорными устройствами 16, 17, 18, 19 и с расположенной в полости баллона 20 мерной емкостью 21, имеющей теплообменник 22 с выходным патрубком 23 и расширительное сопло 24 (дан вариант щелевого кольцеобразного сопла).

В обоих вариантах ЖРД (Фиг.1 и 2) все ПБО (2 и 3) и ПБГ (6 и 7) действуют одинаковым образом. Рассмотрим их работу на примере баллонов окислителя.

В исходном положении камера двигателя (КД) 10 (см. Фиг.1 и 2) работает на газифицированном окислителе из ПБО 3. При этом баллон-дублер 2 (Фиг.3) вакуумирован, его ЗУ 16, 17, 18 и 19 закрыты, а жидкий окислитель в баке 1 находится в осажденном положении (у заборного устройства 15 на нижнем днище бака) за счет действия осевой перегрузки от тяги работающего ЖРД.

При открытии ЗУ 16, под действием внутреннего давления в баке 1 жидкий окислитель вытесняется в мерную емкость 21. После ее заполнения ЗУ 16 запирается и открывается ЗУ 18, в результате чего на вход теплообменника 22 подается теплоноситель, нагретый в рубашке охлаждения (горючее из рубашки охлаждения 12 в варианте ЖРД № 1 на Фиг.1 или окислитель из секции 13 рубашки охлаждения в варианте ЖРД № 2 на Фиг.2). Под действием подводимого тепла окислитель в емкости 21 (на Фиг.3) испаряется, затем, пройдя через расширительное сопло 24, полностью газифицируется и заполняет полость 20, вызывая рост давления в ней. При достижении определенного давления, сигнализирующего о готовности баллона 2 к работе, ЗУ 18 закрывается, прекращая подачу теплоносителя на вход теплообменника 22. Далее, по факту опорожнения ПБО 3 (на Фиг.1 и 2) и закрытия ЗУ на его выходе, определяемому моментом падения давления в ПБО 3 ниже рабочего уровня, выходное ЗУ 17 (на Фиг.3) у баллона-дублера 2 открывается и газообразный окислитель начинает поступать через регулятор давления 4 (на Фиг.1 и 2) либо в КС 11 в варианте ЖРД № 1 (на Фиг.1), либо в секцию 13 рубашки охлаждения КД в варианте ЖРД № 2 (на Фиг.2). При этом ЗУ 18 на входе теплообменника баллона-дублера 2 (на Фиг.3) открывается и теплоноситель поступает в теплообменник 22 для поддержания процесса газификации окислителя и выхода баллона-дублера 2 на установившийся режим питания КД окислителем.

Далее, с выходом баллона-дублера 2 на установившийся режим работы открывается ЗУ 19 опорожненного ПБО 3 и из его полости 20 производится «сброс» остатков газообразного окислителя через устройство 9 на Фиг.1 и 2 (например, через осевые ЖРДМТ). После вакуумирования полости 20 (на Фиг.3) ПБО 3 и закрытия ЗУ 19 полуцикл работы системы подачи окислителя завершен - система приведена к выше описанному исходному состоянию, когда ПБО 3 и баллон-дублер 2 поменялись ролями и ПБО 3 подготовлен к «зарядке» новой порцией жидкого окислителя.

Аналогичные и параллельно идущие процессы имеют место с ПБГ 6 и его баллоном-дублером 7 в линии подачи горючего.

В линиях подачи окислителя и горючего, в любой момент времени полета СМТ, в одном из пары промежуточных баллонов внутреннее давление газообразного компонента всегда будет не ниже рабочего давления подачи компонента на вход в двигатель и всегда будет выше давления подачи этого компонента в другие текущие бортовые потребители - двигатели системы ориентации и стабилизации СМТ, топливные элементы бортового ЭХГ системы электроснабжения (если такой имеется) и пр. Таким образом, предлагаемый безнасосный криогенный ЖРД может выполнять не только собственные функции (как движителя), но и функции систем подачи основных компонентов топлива в бортовую энергоустановку, в ДУ ориентации и стабилизации СМТ и пр. Это дает дополнительный эффект, позволяя упростить состав СМТ, снизить массу его конструкции и, соответственно, увеличить массу выводимого полезного груза.

Предлагаемый ЖРД реализует такие же эффективные многовитковые схемы межорбитальных перелетов с минимальными энергозатратами (с включениями двигателя в апсидальных точках промежуточных орбит), что и прототип . Однако необходимая кратность включения ЖРД, число промежуточных орбитальных витков и, соответственно, продолжительность межорбитального перелета здесь могут быть многократно уменьшены как за счет повышения (на порядок) тяги двигателя, так и за счет возможности сколь угодно увеличенной длительности его непрерывной работы.

Оба варианта предлагаемого безнасосного криогенного ЖРД имеют, как минимум, те же, что и у прототипа , описанные выше преимущества перед двигателями с ВСПТ традиционного типа. В сравнении же с наилучшими образцами турбонасосных ЖРД оба варианта предлагаемого безнасосного криогенного ЖРД обладают всеми достоинствами двигателей с ВСПТ (простота, надежность, низкая стоимость разработки и изготовления, быстрое приведение системы в рабочее состояние) и имеют при этом преимущество в эффективности применения в составе СМТ как по энергетическим, так и технико-экономическим показателям.

Использованная литература

1. Заявка на патент РФ № 2011101528 «Жидкостный ракетный двигатель многократного включения (варианты)» с приоритетом от 18.01.2011 г.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Безнасосный криогенный жидкостный ракетный двигатель, содержащий линию подачи окислителя, включающую последовательно соединенные бак с жидким окислителем, промежуточный баллон окислителя с запорными устройствами на входе и выходе и расположенной в его полости мерной емкостью с расширительным соплом и теплообменником, регулятор давления, и камеру сгорания двигателя, и линию подачи горючего, включающую последовательно соединенные бак с жидким горючим, промежуточный баллон горючего с запорными устройствами на входе и выходе и расположенной в его полости мерной емкостью с расширительным соплом и теплообменником, регулятор давления, рубашку охлаждения камеры двигателя, теплообменники промежуточных баллонов горючего и окислителя с запорными устройствами на входе и камеру сгорания двигателя, отличающийся тем, что параллельно промежуточным баллонам окислителя и горючего подключены баллоны-дублеры с запорными устройствами на входе и выходе и расположенными в их полостях мерными емкостями с расширительным соплом и теплообменником, кроме этого, полости всех промежуточных баллонов через запорные устройства соединены с устройством эффективного сброса газообразных остатков.

2. Безнасосный криогенный жидкостный ракетный двигатель, содержащий линию подачи окислителя, включающую последовательно соединенные бак с жидким окислителем, промежуточный баллон окислителя с запорными устройствами на входе и выходе и расположенной в его полости мерной емкостью с расширительным соплом и теплообменником, регулятор давления, секцию рубашки охлаждения камеры двигателя окислителем, теплообменник промежуточного баллона окислителя с запорным устройством на входе и камеру сгорания двигателя, и линию подачи горючего, включающую последовательно соединенные бак с жидким горючим, промежуточный баллон горючего с запорными устройствами на входе и выходе и расположенной в его полости мерной емкостью с расширительным соплом и теплообменником, регулятор давления, секцию рубашки охлаждения камеры двигателя горючим, теплообменник промежуточного баллона горючего с запорным устройством на входе, и камеру сгорания двигателя, отличающийся тем, что параллельно промежуточным баллонам окислителя и горючего подключены баллоны-дублеры с запорными устройствами на входе и выходе и расположенными в их полостях мерными емкостями с расширительным соплом и теплообменником, кроме этого, полости всех промежуточных баллонов через запорные устройства соединены с устройством эффективного сброса газообразных остатков.